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ABSTRACT

Network security research can benefit greatly from testing environments that are

capable of generating realistic, repeatable and configurable background traffic. In order

to conduct network security experiments on systems such as Intrusion Detection Sys-

tems and Intrusion Prevention Systems, researchers require isolated testbeds capable of

recreating actual network environments, complete with infrastructure and traffic details.

Unfortunately, due to privacy and flexibility concerns, actual network traffic is rarely

shared by organizations as sensitive information, such as IP addresses, device identity

and behavioral information can be inferred from the traffic. Trace data anonymization

is one solution to this problem. The research community has responded to this saniti-

zation problem with anonymization tools that aim to remove sensitive information from

network traces, and attacks on anonymized traces that aim to evaluate the efficacy of

the anonymization schemes. However there is continued lack of a comprehensive model

that distills all elements of the sanitization problem in to a functional reference model.

In this thesis we offer such a comprehensive functional reference model that identifies

and binds together all the entities required to formulate the problem of network data

anonymization. We build a new information flow model that illustrates the overly opti-

mistic nature of inference attacks on anonymized traces. We also provide a probabilistic

interpretation of the information model and develop a privacy metric for anonymized

traces. Finally, we develop the architecture for a highly configurable, multi-layer network

trace collection and sanitization tool. In addition to addressing privacy and flexibility

concerns, our architecture allows for uniformity of anonymization and ease of data ag-
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gregation.
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CHAPTER 1. OVERVIEW

Network security research can benefit greatly from testing environments that are

capable of generating realistic, repeatable and configurable background traffic. In order

to conduct network security experiments, researchers require isolated testbeds that can

recreate actual network environments, complete with infrastructure and traffic details

[30]. Ideally, such background traffic would be realistic, repeatable and tunable to allow

for accurate and repeatable security testing. For our purposes, realistic can be defined

as being indistinguishable from actual traffic collected from the environment being sim-

ulated. Unfortunately, due to privacy and flexibility concerns, actual network traffic

is rarely shared by organizations as sensitive information, such as IP addresses, device

identity or other information can be determined from actual traffic [1, 18]. In order to

solve this problem, several network data anonymization tools and techniques have been

developed which intend to sanitize sensitive data such that identity information cannot

be inferred from a published trace. Reassured by these developments, recent years have

seen the emergence of a few network data cataloging repositories [6, 5, 20]. However due

to the lack of explicit confidence metrics in the efficacy of these tools, the availability of

accurate and usable enterprise network trace data remains scarce.

In this thesis we introduce a comprehensive functional reference model that identifies

and binds together all the entities and components required to formulate the problem

of network data anonymization. We aim to tie in all relevant past work into our model

and build a new information flow model that illustrates the overly optimistic nature of

attacks on anonymized traces. We also provide an information theoretic interpretation



www.manaraa.com

2

of the information model and develop a privacy metric for anonymized traces.

1.1 Introduction

With the Internet revolution of the nineties, our communication mechanisms, com-

merce, economy, national security, and even mundane chores of our daily lives are be-

coming more and more intertwined with technology and its reliable functioning. As

this interdependency increases, it becomes vital to ensure the reliability and security

of this vast infrastructure. However, with its growing complexity it is becoming in-

creasingly difficult to develop and test new security solutions. Such a gargantuan task

requires new methods and techniques along with the development of versatile testbeds

that allow modeling of large enterprise networks.

In order to secure a large organization, not only is it important to develop improved

security solutions, it is equally necessary to development new testbed environments

that accurately simulate the target network. The development of such virtual worlds

represents a paradigm shift in the area of security research making them invaluable to

industry and academia alike.

This network-modeling problem, however, is non-trivial, not only because of the

scale and complexity of modern networks, but also due to the lack of network trace data

and the reluctance of organizations to share this information with security researchers.

In the past we have seen various efforts that address portions of this problem, such as

traffic characterization, traffic and environment reproduction and various testbed designs

[7, 30, 23]. However, since these efforts only address individual parts of the problem,

the interdependencies and details tend to be lost in translation from data collection and

characterization, to deployment of the test environment, thereby reducing the accuracy

of the deployed environment.

The “Network in a Bottle”, or NetBottle, Project is an ongoing effort at Iowa State
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University that employs a new paradigm to preserve these important details to accu-

rately recreate the desired environment. This new paradigm divides the problem into

three layers - data collection and anonymization, model construction and emulation and

deployment. By addressing the entire process, the interdependencies and desired details

can be preserved, while sensitive information within the actual network traffic can be

anonymized and removed, as required, during model construction, preventing that in-

formation from appearing in the testing environment. It is hoped that this approach

will allow for more accurate recreation of a real-world environment within a testbed,

allowing for more accurate experimentation to occur. However the development of the

NetBottle project is constricted by the lack of accurate and usable network traces, which

are essential for the development of the statistical models that feed any realistic back-

ground traffic generator. Industry and academic organizations are like-minded in their

reluctance to share network trace data, which has resulted in fewer entities sharing them.

1.2 Motivation for Sharing Network Traces

Past and current research has laid significant emphasis on the development of tools

and techniques to prevent and detect cyber exploits. Three broad categories of such

tools are Firewalls, Intrusion Detection Systems and Intrusion Prevention Systems. In-

trusion detection and intrusion prevention system monitor network traffic for suspicious

activity and takes appropriate actions such as raising alarms and fingerprinting the at-

tack/perpetrator. Since these systems identify intrusions by differentiating the anoma-

lous activity from normal network activity, the description of ‘normal traffic’ assumes

vital importance in the quality of intrusion detection systems.

While studying the behavior of attack programs such as worms and viruses, which

are let go without further human intervention, is feasible without realistic background

traffic, testing security tools against human motives and complex multi-phase attacks is
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infeasible in the absence of an accurately modeled network with realistic traffic within a

sandboxed environment. Simulating realistic network traffic takes into account various

attributes that affect observed traffic in real networks. For example, modeling host

behavior consists of usage habits as well as ordering of the applications used. Similarly,

application protocols, their types, their versions and protocol versions play an important

role in behavior of generated traffic. Therefore it is necessary for security operators to

share logs of network activity data with researchers to enable them to accurately map

networks within testbed environments and conduct security experiments and analysis.

While it is typical in enterprise environments to use network logs to locally optimize

network throughput and security, current privacy and security policies effectively prevent

organizations from sharing network logs with third party research institutions. While

security through obscurity is frowned upon by the academic community, it is a common,

perhaps unintended, practice in industry. For example, following a security breach,

an organization might scan its networks for vulnerabilities and patch open holes, but

the results from such reactionary behavior would typically not be shared with others,

perhaps, even with departments within the same organization (to safeguard against

malicious insiders). The use of such practices has lead to a culture of pushing attackers

away from oneself without any consideration of poor overall security resulting from a

lack of co-ordination among organizations [1].

Adversaries and malicious attackers on the other hand collude and share attack in-

formation quite commonly. Gone are the days when hacking was for bragging rights

only. A whole underground economy exists, that surrounds and fuels cyber crime and

computer criminals. In order to dampen the growth of this parallel economy and safe-

guard oneself, it has become ever more important for industry to share network logs with

research institutions. Such cooperation would facilitate building of precise and realistic

testing environments for verification and validation of security tools.
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1.3 Problems in Sharing Network Data

Network activity logs in the hands of a malicious attacker can be as invaluable as

a map to a treasure trove. Network logs can be used for reconnaissance and network

fingerprinting. Raw network traces contain information that can be utilized to determine

vulnerabilities and other attack vectors and also pin point defense mechanisms. At

the very least, raw trace logs can divulge private user information such as usernames,

passwords, IP addresses, protocol usage, etc. Adversaries can utilize all this information

to launch a range of diverse attacks, on enterprise networks as whole or individual

users within the network. It is privacy and security concerns like these that prevent

organizations from sharing data and coming together in a mutual effort towards network

security research.

In order to circumvent these privacy concerns several tools have been developed which

sanitize network traces and attempt to remove sensitive data from them. However, the

anonymization tools and techniques present today provide few guarantees on privacy

and do not provide the publisher any means to quantify the privacy risk of making

a sanitized dataset public. Another problem inherent in the nature of network data

is that it is difficult to know a priori the fields that should be considered sensitive

and appropriately sanitized. Finding such information leads us to the tradeoff between

privacy concerns and the usability value of a network activity trace [1, 14].

1.3.1 Privacy Vs. Usability

Network trace anonymization can be performed at several levels of granularity. Tak-

ing IP addresses for example, the crudest form of anonymization, referred to as black

marking, removes the entire IP address from the IP header. Gray marking on the other

hand removes host identification information from the IP address, but leaves subnet

information unperturbed. It trivially follows that such crude forms of anonymization do
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not provide sufficiently useful data for network security and performance research.

Two forms of sanitization that do prove useful are prefix-preserving or pseudo-

anonymous transformation and random or fully-anonymous transformation.

Table 1.1 Examples of Methods to Anonymize IP Addresses

IP Address Black Marking Gray Marking Randomization Prefix-Preserving
129.186.200.110 - 129.186.0.0 69.72.15.50 151.165.120.15
129.186.200.195 - 129.186.0.0 129.186.200.195 151.165.120.125
129.186.50.50 - 129.186.0.0 129.170.7.200 151.165.80.20
129.170.7.200 - 129.186.0.0 192.168.0.100 141.185.35.72
192.168.0.100 - 129.186.0.0 129.186.50.50 145.182.10.10
69.72.15.50 - 129.186.0.0 69.62.50.50 12.29.150.10
69.72.50.50 - 129.186.0.0 129.186.200.110 12.29.150.191

While pseudo-anonymous transformations map all instances of a particular raw data

field to the same unique anonymized identifier in the target namespace, random transfor-

mations maintain no such relations and simply map each instance of a raw identifier to a

different identifier in the target space. Though pseudo-anonymization provides analysts

data with preserved cross identifier correlations and behaviors, the concern remains that

expert adversaries can extract sensitive information, such as protocol usage, network

topology and even true host identities from distributions over several packet flows that

are preserved by pseudo-anonymization techniques.

Therefore, we can visualize the capability of anonymization techniques as a normal

distribution across a spectrum of privacy/usability. This tradeoff between privacy and

utility is illustrated in Figure 1.1. As indicated in the figure, it is equally simple to

optimize trace anonymization for privacy (black marking of sensitive fields) and utility

(minimal sanitization). However the degree of difficulty increases rapidly when balance

is desired between privacy and utility.

Remitters of network trace data prefer to stay within region 1, while data inter-

preters/analysts desire data with higher level of utility. Hence we propose a framework

which takes into consideration a privacy metric, a usability metric and an accuracy met-
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Figure 1.1 Privacy Vs. Usability Tradeoff

ric for network trace anonymization. Together these metrics would form a confidence

metric for the publisher and the interpreter and facilitate a greater degree of cooperation

between industry and academia.

1.4 Current Efforts of Sharing Network Data

Over the past few years the continuing dearth of real network traffic data has fueled

research initiatives towards developing new and improved data anonymization tech-

niques. This growth in the area of sanitization research has spawned a few network data

repositories and catalogues. In this section we list and briefly describe a few such major

efforts.
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1.4.1 CRAWDAD

CRAWDAD [6] is a National Science Foundation (NSF) funded effort at Dartmouth

University. This project collects network activity data from their campus-wide wire-

less infrastructure and utilizes their in-house tools for anonymizing and analyzing the

collected data.

While this is a move in the right direction, this project is still not mature and needs

to develop into a true community resource wherein it would archive trace data from

several locations. Also, due to the nature of wireless data communication networks,

data models generated from their datasets would not be applicable to emulation of more

generic enterprise networks.

1.4.2 PREDICT

The Protected Repository for the Defense of Infrastructure Against Cyber Threats,

also known as the PREDICT [20] project, is an initiative by the Department of Homeland

Security Science and Technology Directorate. This project aims to provide a central

repository of network traffic data accessible through a web-based portal. The repository

consists of three entities - data providers, who submit data to PREDICT, data hosts that

maintain independent systems to store data submitted from providers and researchers,

who utilize the aforementioned data.

The PREDICT project is still in its nascent stages and promises to grow into an

excellent research resource. However at this point access to this repository is extremely

restricted (difficult to register and available only to researchers based in United States)

and data sets are limited in number.
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1.4.3 DatCat

The Internet Measurement Data Catalog [5], also known as the DatCat project, is a

searchable registry of information about network measurement datasets. This repository

has been developed by the Cooperative Association for Internet Data Analysis (CAIDA).

While it is similar to CRAWDAD in nature, it indexes datasets from various sources and

allows users to find, annotate and cite data contributed by others, alongside providing

means to upload new data. The datasets indexed under this project represent a mix of

wireless and wire-line Ethernet data.

Most datasets available through DatCat focus on macro-level data and as such lack

the level of detail necessary for host level modeling and simulation. These datasets also

suffer from the problem of undefined anonymization standards and available traces were

found to be anonymized to different levels.

1.5 The NetBottle Approach

Various efforts have been made to address portions of the sanitization and emu-

lation problem, such as traffic characterization, traffic and environment reproduction

and various testbed designs. However, since these efforts only address portions of the

problem, some of the interdependencies and details are lost between data collection and

deployment of the test environment, reducing the accuracy of the deployed environment.

In this section we introduce the NetBottle project, a comprehensive effort, much

larger in scope and vision than related projects, which considers the emulation problem

as a whole and models the big picture, preserving the important details in order to

accurately recreate the target environment. As mentioned in Section 1.1, this new

paradigm divides the problem into three layers - data collection, model construction

and emulation and deployment. The lower layers provide data to the layers above, and

various methods to evaluate the artifacts generated at a specific layer against the data
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provided by the lower layers. This feedback is critical to ascertain the accuracy of the

models or the deployed environment, while preventing sensitive data from being used in

the creation of the models, or recreated in the generated traffic.

We examine the three layers in the NetBottle paradigm from lowest to highest.

Figure 1.2 NetBottle 3-Layer Paradigm

1.5.1 Probing, Scanning and Characterization

At this layer, data collection is performed on the real-world network that is going to

be emulated. The key network edges are identified, and traffic transmitted over these

edges captured. Since this traffic may contain passwords and other sensitive information,

the traffic captures are anonymized and sanitized to prevent this information from being

leaked. However, different from related works, at this layer a privacy and utility audit is



www.manaraa.com

11

conducted which results in privacy, utility and accuracy metrics. These metrics in turn

drive changes in privacy and usability policies of the data remitter.

There is also the need to deal with multiple capture points within the network,

creating the need for aggregation into a single dataset. This aggregation is required to

prevent the skewing of the analysis due to single packets being captured multiple times

throughout the network. This data is then analyzed to determine the network topology,

key services offered by the hosts in the network, and other desired information. The

results of this analysis are passed up to the second layer for use in model construction.

1.5.2 Model Construction

At this layer, the analysis data from layer one is used to construct various models

of the network topology, services running and network traffic. It is important to note

that the models must remain “environmentally neutral” as they are to support a variety

of deployment environments. Also, since any sensitive information is removed at the

previous layer, no sensitive information should exist within the models, allowing for use

by several researchers and, potentially, for release to the public.

1.5.3 Deployment

At this layer, the models constructed in the middle-layer are used to construct the

systems and traffic generators to emulate the desired network. The systems are con-

figured to provide the services identified during traffic capture so appropriate responses

may be generated.

Since there is the risk of some key dependencies or details being lost during the

transitions between layers, or from the choice of deployment environment, it is also

possible to capture data in the deployment environment and compare that against the

original data capture. The differences between the two datasets can be examined to

determine the overall accuracy of the testbed environment.
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1.6 Thesis Contribution and Organization

This thesis provides an extensive study of anonymization techniques for published

network trace data, focusing particular attention on qualitative issues of collection and

anonymization. In this thesis we introduce a comprehensive functional reference model

that identifies and binds together all the entities and components required to formulate

the problem of network data anonymization.

Chapter 2 of this thesis presents all the relevant past work that has been done in this

area. In Chapter 3 we define the functional models for data collection and introduce the

concept of anonymization audits. We also develop privacy metric for anonymized logs

in Chapter 3. Chapter 4 builds a new information flow model that illustrates the overly

optimistic nature of previous attacks on anonymized traces and provides a probabilistic

interpretation of the information model. Chapter 5 discusses future work and possible

extension of this research and we draw conclusions in Chapter 6.
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CHAPTER 2. RELATED WORK

Typically the anonymization process seeks to achieve three [10] goals: (i) protect pri-

vacy of monitored users, (ii) hide the internal infrastructure information of the network,

and (iii) create realistic and useful anonymized traffic traces. Traditionally, the last of

these three goals has been the most difficult to attain as leaving too much information

in the traces allows sensitive data to be leaked, but if too much information is removed,

the trace provides no practical benefit.

In this chapter we discuss relevant past work that aims to achieve the goals mentioned

above. We divide this description into a discussion of tools and techniques that have been

developed to achieve desired anonymization, individual attacks and inference methods

that have been used against anonymization schemes, and more recent mathematical

frameworks which attempt to formalize the de-anonymization process.

2.1 Anonymization Tools

Several sanitization tools have been developed over the last few years. They employ

different techniques for network trace sanitization. Diverse as these tools are, they

adhere to certain common requirements forced upon them by the research uses that the

sanitized traces are subjected to. These requirements, as outlined by Coull et. al. in

[27], are listed below:
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2.1.1 Anonymization Tool Requirements

2.1.1.1 Pseudonym Consistency Requirement

Areas of research that require counting of distinct hosts within a trace, e.g. traffic

characterization, require that empirical evaluation be done on a per host basis. Such

research endeavors would be rendered futile if the unique host identifiers within a trace,

such as IP addresses and hardware addresses, were not perturbed consistently within a

trace and even across multiple traces within the same enterprise. Without such consis-

tency, such research would only be applicable to a particular trace and not the entire

organization.

2.1.1.2 Protocol Header Requirement

Most research endeavors require the use of transport, network and link layer head-

ers. As such, through the same reasoning as above, the preservation and appropriate

sanitization of these headers is central to any anonymization tool. Payload destruction,

on the other hand may be allowable for certain types of research purposes.

Additionally, transport layer traffic records must be maintained within the dataset.

2.1.1.3 Port Number Requirement

Port numbers must be maintained in their unperturbed state in order to facilitate

protocol classification schemes. While this requirement might seem like a red flag, it

must be noted that recent research has indicated that that application layer protocols,

and hence port numbers, can be accurately identified through the use of timing and size

information [37].

Tcpmkpub [24] and Tcpdpriv [15] are the two most prominent trace anonymization

tools. While tcpdpriv acts as a simple filter, removing or modifying packet header based
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on network level rules, Paxson and Pang in [22] have developed a high level environment

that allows cross layer packet anonymization. Recently Slagell et al. concluded work

on FLAIM (Framework for Log Anonymization and Information Management) and CA-

NINE (Converter and Anonymizer for Investigating NetFlow Events), both of which are

multi-level anonymization tools that support several anonymizing algorithms [2].

Upon analysis of these works, we discovered that while they fulfill some expectations

that are desired of an ideal anonymization tool and provide important insights, they

are lacking in several key areas. Before we identify these issues, it is important that

we establish a classification for anonymization tools. While researching these works two

classes of anonymization tools were identified: (i) multi-level anonymization tools and

(ii) multi-layer anonymization tools. Tools that fall in the former category strive to allow

the user to make fine-grained tradeoffs between information loss and privacy/security

concerns. They achieve this goal by supporting a diverse set of anonymization algo-

rithms of different strengths, which work to conceal sensitive information at different

levels. However, these tools primarily work at the network layer and deal with packet

headers only. The multi-layer anonymization tools, in addition to supporting a variety of

algorithms, reconstruct packets into data stream flows and anonymize packet payloads

as well. These trace anonymization tools are cross layer and are capable of identifying

and anonymizing application layer packets as well.

2.1.2 Multi-Level Anonymization Tools

Tcpdpriv, FLAIM and CANINE are all multi-level trace anonymization tools. While

all three of them honor the pseudonym consistency, transport layer records and port

number requirements, only Tcpdpriv meets the header requirement (FLAIM and CA-

NINE operate on NetFlow logs). Tcpdpriv provides multiple levels of anonymization,

from leaving fields untouched up to performing complete black marking of header fields.

Tcpdpriv, however completely discards TCP and UDP payloads. It also provides very
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limited anonymization primitives such as prefix-preservation and sequential mapping

[16]. Ipsumdump [12] dumps packets into ASCII format and then uses tcpdpriv to

anonymize the IP addresses as specified by the user. FLAIM and CANINE build on

the same concept though they provide a much wider set of anonymization primitives

and support several log formats and input sources. FLAIM can also be easily integrated

with passive traffic monitoring, though it is not optimized for real time anonymized trace

output. While FLAIM and CANINE have come a long way since Tcpdpriv, they suffer

from some of the same issues that plague their older counterpart. All of these tools are

extremely memory intensive and are marked by their lack of parallelizing options for

trace anonymization.

2.1.3 Multi-Layer Anonymization Tools

The Tcpmkpub programming environment proposed by Paxson and Pang is a multi-

layer anonymization tool. As mentioned above, Tcpmkpub constructs the packets

into data stream flows upon which user defined anonymization policies are executed.

Tcpmkpub is not limited to the network layer and is capable of anonymizing application

layer payloads as well. However, Tcpmkpub also provides a limited set of anonymization

primitives. Also, the framework defined in [22] is currently implemented in Bro [24], a

network intrusion detection system scripting language for Unix. Bro is a rather obscure

scripting language, which limits the usability of Tcpmkpub, since it requires users to

define their own functions due to the limited number of primitives that Bro, being an

intrusion detection system, provides.

AAPI [10] (Anonymization Application Programming Interface) is another multi-

layered anonymization framework. AAPI offers a wide range of anonymization capa-

bilities that can be applied to any field of a packet up to the application level. AAPI

simplifies the process of defining anonymization policies by providing and intuitive, C-

like API for the user. Also, AAPI supports several input formats and flow logs and
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has been partially integrated with passive network monitoring systems. While AAPI

is a comprehensive tool, which possesses many of the desired characteristics of an ideal

anonymization tool, its still requires seamless integration with passive network monitor-

ing systems, optimizations for real time operation and parallel processing of trace data.

Both Tcpmkpub and AAPI meet the requirements outlined above.

2.1.4 Issues and Insights

While the multi-layered tools are developments in the right direction, they still lack

some architectural attributes which make them less than ideal. As described by Pang,

Allman, Paxson and Lee [24], complete anonymization requires at least 2 passes through

the data as some IP addresses need to be mapped across the entire IP address space

without collisions. The solutions implemented by the tools describe above, anonymize

as much information as possible before writing to persistent storage, and then complete

the anonymization with a second pass.

However, such anonymization in isolation cannot occur, as it would prevent a proper

analysis of the collected data. For example, we can imagine packets that are having their

timestamps altered to prevent the fingerprinting attack proposed by Kohno, Broido,

and Claffy [34]. The approach presented by Pang, Allman, Paxson and Lee would be

to simply apply a counter as the timestamp, maintaining the order of the packets, but

not the actual timing information. Unfortunately, without accurate timing information,

it would be impossible to determine the proper ordering for packets collected at two

different locations in the network. This illustrates the need to maintain some information

for the packets to be properly aggregated. However, to prevent sensitive information

from being propagated into the model, it is necessary to have a multi-tiered classification

and categorization system. Another drawback of existing tools is the lack of an explicit

privacy and usability policy. These policies should be formally defined and utilized to

construct the anonymization policy. While Tcpmkpub and AAPI, as described above,
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do require an explicit anonymization policy, neither tool has support for generating or

updating this policy based on privacy and utility policies or feedback from an auditor.

In Chapter 3 we introduce a functional model for network data anonymization. This

model requires multiple anonymization passes, interleaved with analysis steps. We can

then construct an anonymization policy, based on the analysis needs and the desired

level of privacy and utility, to determine when in the analysis process certain pieces of

information are removed or anonymized.

2.2 Attacks against Anonymization Techniques

Anonymization techniques aim to transform network logs such that host identity, net-

work topology, user behavior, and security mechanisms cannot be inferred from them.

While it has proven quite challenging to develop a tool that provides strong anonymiza-

tion without hampering usability [1, 21], several techniques have been devised to subvert

the anonymization transforms and infer sensitive information from sanitized logs.

The same anonymization requirements that facilitate research utility also open sev-

eral holes in the process for an attacker to exploit. The goal of the malicious attacker or

adversary is to extract as much of the original data as possible from the sanitized data.

The recent advancements in sanitization technologies have happened as a reaction to

the growing privacy threats and increasing need for trace utility [17, 36]. Several recent

works have shown that it is possible to infer network topology [27], deanonymize unique

host identities [9, 26, 27], and profile user protocol usage [3, 28, 27, 25].

Despite the development of state-of-the-art sanitization techniques and tools to im-

plement them, several attack vectors remain that an adversary may utilize to achieve

circumvent anonymization. In the following section, we identify a few such attack vec-

tors that form the building blocks of more complex hybrid attacks. We borrow the

categorization developed by Pang et. al. in [24] for this purpose.
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2.2.1 Active Data Injection Attacks

Pang et al. define data injection attacks as an adversary injecting information within

a network to be logged with the purpose of later recognizing that data in an anonymized

form. This type of attack is similar in form to a known or chosen plaintext attack

in cryptography. The attacker creates specific markers in unsanitized traffic, and if

these markers remain recognizable after anonymization, then they allow the adversary

to derive original data, not only for the corresponding marker but also for other raw

data sanitized using the same transforms. The target space of this attack is, however,

limited to the organizations that publish anonymized data on a regular basis over short

intervals.

In [32], Brekne et. al. empirically demonstrate the effectiveness of this attack against

prefix-preserving anonymization and suggest remedies that might limit the damaging ca-

pacity of this attack. However, they concede that this type of attack is nearly impossible

to defend against without tenacious human investigation and its efficacy is limited only

by the expertise of the adversary. Pang et. al., as a remedy, suggest the removal of all

scanning data from a trace before the sanitization and release of the dataset.

2.2.2 Known Mapping Attacks

This category of attacks exploits the discovery of a mapping between raw and sani-

tized data in one instance, to subvert the anonymization of that same data in multiple

instances. Therefore, if IP address anonymization is consistent multiple logs, if the ad-

versary is able to discover the mapping in one log, he or she can use the information

gained to recover IP addresses in other logs.

It is easy to observe that this kind of an attack can be used effectively with data

injection attacks discussed in the previous section to obtain a great deal of identity

information from a sanitized network trace.
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2.2.3 Network Topology Inference

Network topology consists of nodes that make up the vertices of the network, the

connectivity between them as the edges of the networks and routers along the way. Sev-

eral fingerprinting attacks have been suggested that attempt to deanonymize hosts and

accurately infer the topology map from a trace. Pang et al. formally define fingerprinting

attacks as the process of matching attributes of an anonymized object against attributes

of a known object to discover a mapping between anonymized and unanonymized ob-

jects.

In order to provide intuition for such an attack, consider the case of targeting an

organization’s web server with such an attack. If an adversary can isolate all anonymized

IP addresses which respond to large amounts of traffic on port 80, and compare them to

unanonymized external data available from several public databases, the adversary will

be able to create a mapping between the anonymized and raw IP addresses.

Koukis et al. [9] and Coull et al. [27] have done significant work in this area and

have achieved striking deanonymization percentages. Koukis et al. in their work show

that, given the pseudonym consistency and header requirements, statistical identification

techniques can be used to uncover the identities of users and their surfing activities from

sanitized traces. They utilize HTTP request and response payload sizes (from multiple

sources) to construct a signature of a webpage and then match these signatures to similar

profiles extracted from the sanitized trace.

Coull et al. on the other hand apply an information theoretic approach to identifying

’heavy hitters’ in the sanitized trace. They employ an iterative algorithm to obtain the

set of most frequently occurring IP addresses in the trace. They monitor the normalized

entropy of the trace to determine the heavy hitters. Intuitively, upon removing frequently

occurring IPs from a trace, the normalized entropy of the trace should stabilize above

a threshold. They then utilize the Dominant State analysis proposed by Xu et al.
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[36] to develop a behavioral profile of the heavy hitters. These behavioral profiles can

then be utilized to fingerprint and uniquely identify hosts based on their behavior. In

order to determine classless subnets they utilize the k-means clustering algorithm to

automatically determine the best subnets.

Towsley et. al. utilize the IPID field from the IP header to infer the network path

and determine end system characteristics. They exploit the IPID to determine— the

amount of internal (local) traffic generated by a server, the number of servers in a large-

scale, load-balanced server complex, and the difference between one-way delays of two

machines to a target computer. Their work however is applicable only to 16-bit IPIDs

that are generated by a global counter in the IP stack of the source machine.

While a great deal of effort has been spent on topology inference attacks, no attack

completely infers the topology of a network. Above attacks can be used to identify

the important servers within the network, cluster subnet information and profile hosts.

However, it was unclear within [27], and other similar works, as to how this information

would be used to determine connectivity between identified hosts as well as subnets.

Till such a connectivity map can be accurately determined, topology inference attacks

remain incomplete.

2.2.4 Cryptographic attacks

Cryptographic functions are at the heart of most anonymization schemes. This in-

trinsically makes the anonymization techniques only as secure as the cryptographic func-

tions that are used to implement them. Cryptographic attacks, such as chosen plaintext

attacks, known plaintext attacks, etc. are therefore equally applicable to sanitization

functions. Furthermore, a cryptographic compromise affects not only a single entry or

log, but also the entire data set, since these attacks usually reveal the secret keys that are

used to sanitize data. Fan et al. in [16] present a complete empirical security evaluation

of prefix-preserving IP address anonymization.
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However, it must be noted that these attacks require expert knowledge and are

much more difficult to perpetrate than other attacks that have been listed above. Also,

cryptographic attacks typically require additional information that must be first gathered

through other attacks.

2.3 Frameworks

The attacks described above, while effective in most cases, lack a formal structure and

methodology. They are mostly implementations that exploit independent vulnerabilities,

and as such, can be independently and sometimes easily mitigated. Also, they view the

sanitization problem solely from the eyes of an adversary and as such provide little help

to a data contributing enterprise. While they demonstrate the immaturity of sanitization

schemes, they do nothing to provide a metric that might be used to gauge the efficacy

of a sanitization scheme.

In light of these observations, two attack and evaluation frameworks have very re-

cently been developed. These frameworks take into account the interdependencies be-

tween different fields in a trace and infer sensitive information from relations between

these interdependencies across traces. Above all, they mathematically formulate the

attack process and attempt to derive a privacy metric that a data remitter can utilize

prior to publishing a dataset. We discuss these frameworks below and extend the first

one in Chapter 3.

2.3.1 Evaluation Framework

In [25], Coull et. al. develop a mathematical, information theory centric, framework

for the analysis and evaluation of network trace anonymization. They utilize the concepts

of entropy and mutual information [33] to derive probability distributions of identities

of unique objects within an anonymized trace.
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In their analysis, they define an object by a set of distributions on the features of the

network data (header attributes), which represent its presence in the data. Therefore,

within their framework, the goal of the adversary is to create a bijective mapping between

an anonymized object and its unanonymized counterpart. In order to do so, they perform

an implicit time-series analysis on the anonymized data. Note that they assume that

the adversary possesses the unanonymized trace. This is done to model the attacker’s

external network information.

The first step after the isolation of unique objects from the trace is feature extraction

and selection. In order to do this, they record the inter-record and intra-record correla-

tions between the various occurrences of the object, thus creating an implicit time series.

Once the feature extraction is complete, they select a mutually independent set of the

features. They do this by grouping together the fields whose mutual information across

their marginal distributions was higher than a defined threshold.

In order to quantify the degree to which the anonymized objects are distinguishable,

they compare the features of an anonymized object to those of all unanonymized ob-

ject using the L1 similarity metric. They use this comparison to derive a probability

distribution on the potential true identity of the object. Finally, they use the resultant

probability distribution to calculate an entropy measure that provides an intuition on

the efficacy of the sanitization scheme.

Though this framework elegantly captures the interdependencies between various

attributes of a sanitized trace, its flaw lies in its design. This work assumes that the

adversary has access to the raw, unsanitized trace. While this is done for calculating

worst-case probability, it defeats the purpose of evaluation. This scheme will always

provide an underestimation of the sanitization scheme. This scheme also does not take

into account the notion of universal information that we introduce in this thesis. Lastly,

Coull et. al. fail to provide an explicit privacy metric. We address this in Section 3.3.
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Figure 2.1 Evaluation Framework suggested by Coull. et. al.

2.3.2 Attack Framework

Inspired by the same factors as above, Towsley et. al., in [4] develop a novel, sys-

tematic, mathematical attack framework applicable to prefix-preserving anonymization.

They develop a general attack that can be executed by an adversary in possession of a

modest amount of public information about the target network. We present their attack

algorithm below. Note that in interest of brevity, we omit the mathematical details of

the framework.

Equally applicable to full and partial prefix preservation, the attack formalized by

Towsley et. al. consists of three distinct steps. In step one, the adversary derives traffic

information for each host in the anonymized trace. In this step the adversary utilizes

attacks outlined in Section 2.2 to compile a trace fingerprint of each unique object in

the anonymized trace.
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In step two, the adversary gathers external information about the real network of

hosts believed to be present in the trace. The host properties collected are similar to

those presented in step one. Since these external fingerprints can be imperfect, they

define a cost function which is applied to pairs of fingerprint attributes and acts as

a measure of the adversary’s belief in the mapping between a trace and an external

fingerprint. They define the cost function to be zero when the trace fingerprint equals

the external fingerprint. They visualize these fingerprints as unordered trees constructed

using the natural subnet hierarchy.

Step three produces a set of de-anonymization functions that are good approxima-

tions to the actual de-anonymization function. The trace and external fingerprints along

with the cost function are given as input to step three. They model this attack as a

constrained tree edit distance problem for unordered trees.

Once again, this framework assumes that the information gathered from external

sources and that contained the network trace is an accurate representation of the tar-

get environment. It thus suffers from the ignorance of the information model that we

introduce later. Also, the choice of a good cost function is a limiting factor for this

framework.
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CHAPTER 3. REFERENCE MODEL FOR TRACE

ANONYMIZATION

We have established, thus far, that in order to conduct network security experiments,

researchers require isolated testbeds that can recreate actual network conditions under

controlled conditions. Ideally, the background traffic in such testbeds would be realistic,

repeatable and tunable to allow for accurate and repeatable testing. Perhaps the most

difficult and constricting problem that researchers are facing today is the scarce avail-

ability of actual network traffic. This data is required to construct statistical models

that lie at the core of background traffic generators. Even the grand unifying view of the

NetBottle project is constricted at its first layer due to the lack of realistic data, and the

continued reluctance of enterprise organizations in sharing their network activity logs.

While several attempts have been made to address these privacy concerns, we contend

that they attend only to parts of the problem and lack formal structure that is required

to solve the data collection and sanitization problem. The tools that we have discussed so

far are accurate and robust implementations of sanitization techniques, but they provide

no privacy guarantees on the efficacy of these schemes against inference attacks. The

attack and evaluation frameworks discussed in Chapter 2 provide a formal methodology

of perpetrating attacks against sanitized traces and claim to provide worst-case privacy

metrics. They do so however under questionable assumptions, due to which the utility of

their work seems overly optimistic. Thus, past work has failed to build a comprehensive

framework that is capable of formally modeling the sanitization problem and identifying
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the interfaces between the various entities in the system. Especially, from the data

contributor’s viewpoint.

In this chapter we offer such a reference model that formalizes the sanitization prob-

lem from the remitter’s viewpoint. We identify the entities involved in the sanitization

problem and provide a functional model for a data collection and sanitization tool.

Based on [25], we also provide a usable information theoretic privacy metric for a sani-

tized trace. With the aid of our model we are able to identify open problems that must

be addressed and pave a roadmap for future work in the area.

3.1 Entities

Traditionally formalization attempts at the sanitization problem have only considered

three entities in the system [25, 4, 21], namely: collector, analyst, and adversary. While

these three entities are adequate for analysis and attack research purposes, they represent

an incomplete view of the system for the data publishing organization. Ideally the

organization that collects and sanitizes activity logs from their network, requires an

internal auditing entity that emulates the adversary in order to evaluate the privacy,

accuracy and usability of the network trace.

In order to allow for such a body in the system, we categorize entities in our model

into two broad classes: remitter of data and interpreter of data.

3.1.1 Data Remitter

This category comprises of two entities: the collector and the auditor. Collectively

these two entities are responsible for network trace collection, sanitization, and publica-

tion.
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3.1.1.1 Collector

Given the scale of modern network, it is not feasible to collect data at every edge

within the network. The collector’s goal is to identify the most important network edges,

collect and aggregate data across these edges and uniformly sanitize the data in a way

that maximizes the efficiency and accuracy of the analyzer’s task, while minimizing the

efficiency and accuracy of the adversary’s attempt to infer the raw, sensitive data.

3.1.1.2 Auditor

While the anonymization tools used by the collector provide guarantees on the cryp-

tographic security of the functions used for anonymization, no anonymization system

provides privacy and utility guarantees on the output trace. Therefore the need arises

for an explicit entity that can provide guarantees on the privacy, usability and accuracy

of sanitized activity logs to the collector before a trace can be published.

The auditor shares a threat model with the collector and utilizes the privacy policy

and usability policy, to determine the efficacy of the anonymization scheme and the

utility of the trace to the analyst. This is a feedback-controlled mechanism between the

collector and the auditor which makes the privacy and usability policies dynamic.

3.1.2 Data Interpreter

Analysts, who intend to use published network traces for security experimentation

and adversaries, whose goal is to recover as much of the original, sensitive information

from the sanitized trace, together form the category called interpreters.

3.1.2.1 Analyst

The analyst gathers network trace data from one or several remitters and utilizes

it to construct various statistical models of the network topology, services running and
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host/user behavior. Analysts are expert, cost-effective researchers who can utilize real-

istic network data from an organization in order to accurately map the organization’s

network in a safe sandboxed environment and run security experiments.

3.1.2.2 Adversary

The adversary, while also an interpreter of data, has malicious goals. The adversary

aims to create a bijective mapping between the unanonymized trace and the sanitized

trace, and has expert knowledge to perpetrate attacks of the nature described in Sec-

tion 2.2 against the published data.

3.2 Reference Model

We offer a reference model for network trace anonymization that adequately captures

all the entities that form the sanitization problem. Our model harnesses past work that

has been done in this area and unifies it in a functional way along with identifying

missing pieces of the puzzle and completing the big picture. As mentioned above, we

divide the problem into four basic entities, collector, auditor, adversary, and analyst and

build functional models for these entities. We build a complete functional architecture

for the collector/anonymizer, one that supports both offline and online anonymization,

and develop a reference model for the auditor. Adversarial models have been developed

in [9, 26, 27] and [4], though not without some questionable assumptions, and as such

have been given due attention in Section 2.3.2. We show in Chapter 4 how some of these

assumptions, while not stated explicitly in past work, inadequately represent information

flow in the system and as such illustrate the optimism inherent in past work. It must

be noted that the inclusion of the analyst in our reference model is only for the sake of

completeness and a comprehensive formal model of the analyst is beyond the scope of

this thesis.
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Figure 3.1 below depicts our reference model for network trace anonymization. Before

we dive into a discussion of each of the elements of this reference model, we provide a

data model for the sanitization problem.

3.2.1 Data Model

Our data model begins with universal information of the enterprise network where

the trace data is to be gathered. This universal information represents the accurate and

comprehensive truth regarding the state of the network. This information can be viewed

as comprising of complete knowledge of network topology (vertices and edges connecting

them), unique host identity and operating system, user/service information, and security

devices within the network. The raw data collected by an organization (depicted by R

in Figure 3.1) is a subset of this universal information. There are various elements of the

universal information that cannot be captured in the raw trace during collection phase. 1

The collector transforms this raw trace data to obtain the sanitized trace (represented by

T(R) in Figure 3.1) and the metadata associated with this sanitized trace (represented

by M in Figure 3.1). The sanitized trace is produced under the constraints of the

privacy policy and the usability policy and as such the data publisher must define the

characteristics and semantics of each field in the sanitized trace. This ensures that an

analyst can treat each field within the anonymized trace appropriately with respect to

the value that it contains. The accompanying metadata must contain several pieces

of information to impart research value to the anonymized trace. The metadata must

provide the IP prefixes of the local subnets that appear in the data along with their

anonymized counterparts. It should describe the packets that had incorrect checksums,

if any, and the edges within the network which were tapped to collect the data. The

metadata must also include the explicit anonymization policy that was used to gather

1We expand on this notion of information in Chapter 4 and provide a probabilistic interpretation of
this idea and its implications
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the trace data. This data is necessary to inform the analyst of the type of transformation

that was applied to a field of data.

3.2.2 Auditor Model

The auditor is an entity, internal to the contributing organization, which works with

the collector to guarantee the privacy, accuracy and usability of a sanitized trace. Within

our model, the auditor is the only entity that has access to the universal information of

the network and its components. This information feeds the functions utilized by the

auditor to develop the privacy, utility and accuracy metrics.

The auditor emulates the role of an adversary in order to derive the privacy guarantee

for a sanitized trace. We utilize the framework developed by Coull et al. in [25] to

model the auditor as the adversary, augmenting the information base of the auditor

with universal information of the network. The auditor performs a time series analysis

on the objects present in the anonymized as well as the raw trace to derive probability

distributions of the features of the objects. An object within a trace can be either a

unique host or a particular user, and its features are the shared, semantically meaningful

relationships between its occurrences in the time series that is the data set. Once

the auditor has derived probability distributions for all anonymized and unanonymized

objects, statistical similarity metrics can be utilized to compare the feature distribution

of an anonymized object with that of all unanonymized objects. Using this approach,

the auditor can create a probability distribution of the true identity of the anonymized

object. Thus the auditor can derive a pessimistic bound on the privacy of the anonymized

trace assuming the availability of complete raw information.

It must be noted however, that since the raw trace is only a subset of the universal

information, even under perfect deanonymization, a higher degree of uncertainty remains

in the probability distribution of the unanonymized object than is acknowledged in [25].

However, since the auditor possesses the universal information, he is able to further
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interpret the true privacy guarantee provided by the sanitization process. We provide a

detailed understanding of this notion in Chapter 4.

While privacy guarantees are important to the publisher of a sanitized log, it is

equally important for the publisher to provide the analyst a guarantee regarding the

utility of the trace. Therefore it falls to the auditor to calculate a utility metric of the

anonymized trace. The auditor leverages the usability policy, defined by the collector

in conjunction with the analyst, to derive such a metric for the trace. A simple method

[21] of deriving such a metric is for the auditor to assign a negative score for each field

in the trace that is anonymized, and a positive score for a field left in its raw state.

Care must be taken to assign appropriate weights to these scores, as each field is not of

equal importance in the trace. The usability policy can prove handy for this purpose.

However, even with weighted scoring, this method fails to capture the interdependencies

between attributes and hence provides a flawed metric. Further work, beyond the scope

of this thesis, is warranted in order to develop a robust utility metric.

Just as privacy guarantees for the sanitized trace are of paramount importance to the

data publisher, so is the accuracy of the trace to the analyst. The sanitized trace must

accurately represent the environment in which the activity log was captured, or else any

experimentation done with the use of such data would be misguided and flawed. Once

again it is up to the auditor, in possession of the universal information, raw and sanitized

traces and the metadata to provide accuracy guarantees to the publisher and the analyst.

Comparing the anonymized trace with the raw trace, and cross-referencing the matching

results with the universal information can reveal such an accuracy guarantee.

3.2.3 Collector Model

Privacy preserving traffic collection is at the core of our reference model. As we have

discussed in this work, network monitoring has severe drawbacks in terms of privacy

infringements, even when data capture is restricted to the header part of the transmitted
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packets and excludes the user payload data. The offline anonymization paradigm —

gather raw data first, then anonymize before distribution, is plagued by the fact that

the collector domain might itself be vulnerable to attackers and malicious insiders and

that trace logs might need to be stored for long periods of time. Therefore it is necessary

to investigate further the problem of collection and sanitization within this domain. To

address this problem and the problem of data aggregation, we propose a functional

architecture for a collection and sanitization tool based on the security principles of,

least privilege, minimum time in raw state, restricted access, complete mediation, and

fail safe defaults. Our architecture, in its simplest distributed form, is presented in

Figure 3.2.

3.2.3.1 Dirty State

We divide our architecture in to two tiers, namely, dirty state and clean state. This

nomenclature is used to identify the condition of data passing through the functional

modules of the system. Dirty state, as its name implies, signifies the presence of private

and sensitive information within the data that needs to be sanitized as it percolates

through the model. This state comprises of a sniffer, a classifier and an interleaved

stage of data analysis actions.

Sniffer Given the scale of modern networks, it is not feasible to collect data at

every edge within the network. The problem, then, is given a certain level of resources,

to determine the edges within the network that are the most important to creating the

emulation environment. It is possible to borrow work from network attack attribution,

to determine the edges most likely to receive the bulk of the traffic. This component

then is the classic network traffic sniffer that is at the heart of several network protocol

analyzers like tcpdump, wireshark, etc. This component takes into account persistent

state information, such as software services, operating system services and protocol filters
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as required by a network administrator.

Classifier Engine The sniffer module feeds network frames to the classifier engine.

This module is an enhanced protocol analyzer that examines network protocol states

and according to the classification rules, outputs protocol events. Functions such as

TCP de-fragmentation and stream reconstruction are performed at this level to support

multilayer analysis and sanitization.

Analysis Actions Since the NetBottle approach requires data to be aggregated,

anonymization in isolation cannot occur, as it would prevent a proper analysis of the

collected data. For example, we can imagine packets that have their timestamps altered

to prevent fingerprinting attacks. The approach presented by Pang, Allman, Paxson and

Lee would be to simply apply a counter as the timestamp, maintaining the order of the

packets, but not the actual timing information. Unfortunately, without accurate timing

information, it would be impossible to determine the proper ordering for packets collected

at two different locations in the network. This illustrates the need to maintain some

information, for the packets to be properly aggregated. However, to prevent sensitive

information from being propagated into the model, it would be beneficial to only have

the information critical to analysis be present within the datasets.

In our model, we extend the idea of anonymization requiring 2 passes proposed by

Pang et al., to conducting multiple anonymization passes, interleaved with the analysis

steps. It is then possible to construct an anonymization policy, based on the analysis

needs and the desired level of privacy, to determine when in the analysis process certain

pieces of information are removed or anonymized. We omit the depiction of this feedback

mechanism in Figure 3.2 in favor of simplicity.
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3.2.3.2 Clean State

As implied by its name, data in this state is secured and sanitized and the anonymized

trace is output at the end of this stage.

Upstream Data Collection Even though offline anonymization can introduce

several privacy and security problems, it is a desired feature in any collection and

anonymization tool due to its simplicity and ease of data aggregation. The upstream

data collection module in our architecture supports this feature and provides the func-

tionality split that is required for online anonymization. At this stage, the raw events,

frames and protocol state information generated by the classifier engine can take two

directions. This module can be configured to aggregate and encrypt this traffic and

collect it in a tamper resistant storage as outlined in [29]. The data, which was in its

raw form up till this point, is then secure in a cryptographically secure storage and

available, only through restricted access, to the remitter for in house analysis or offline

anonymization and aggregation. On the other hand, the aggregated raw data can be fed

to event handlers, which utilize the event specification definitions to concurrently feed

the raw events to the next module to be appropriately sanitized.

Sanitization Transforms and Data Storage The sanitization module takes

pre-defined events as inputs from the upstream data collection function and utilize cryp-

tographically secure anonymization transforms to them. This is conceptualized as an

extendable and flexible layer that can be augmented with new and improved sanitization

functions as new research discovers them. The sanitization functions are driven by a

user defined anonymization policy which the collector derives from the privacy policy

and the usability policy.

Once the data is appropriately sanitized, it is fed into redundant data storage. This

data storage is similar in design to the tamper resistant storage defined above.
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3.3 Privacy Metric for Sanitized Network Logs

The reference model for trace sanitization provides for an auditing entity that can

derive privacy, usability and accuracy guarantees for a sanitized trace. By doing so the

auditor provides the collector and the analyst a measuring stick against which they can

gauge their confidence in the value of a published dataset. In order to develop such a

metric, we utilize the work done by Coull et al. in [25]. We extend their approach with

our notion of universal information and express privacy in terms of bits of entropy lost

post deanonymization.

The privacy metric we propose follows the procedure depicted in Figure 3.3.

Figure 3.3 Procedure to Derive Privacy Metric

The auditor models an adversary’s auxiliary information regarding the organization’s
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network and builds initial probability distributions of the identity of each anonymized

object. We call this probability distribution the a priori identity distribution. Next,

as described in Section 2.3.1, the auditor identifies objects from the anonymized and

unanonymized traces and extracts the probability distributions of each feature for ev-

ery object. Upon extracting these feature distributions, the auditor matches the com-

plete feature distribution of each anonymized object with the feature distributions of all

unanonymized objects. Using a similarity metric, the auditor then derives a probability

distribution of the true identity of the object. We call this probability distribution the a

posteriori identity distribution. For an object (O), the entropy of the a posteriori iden-

tity distribution (HT ) will be less than the entropy of the a priori identity distribution

(HP ).

=⇒ HT (Oi) ≤ HP (Oi)

The information gained about the identity of an object can then be specified in terms

of the difference in the a priori and a posteriori entropies of the object.

=⇒ ∆H(Oi) = HP (Oi)−HT (Oi)

Therefore the total number of bits of information gained is expressed by:

∑
∆H(Oi) =

∑N
i=1(HP (Oi)−HT (Oi))

Where N is the number of objects.

The auditor can use this estimation of information gained from a deanonymization

attempt to bind it to a ceiling defined by the privacy policy. However, it must be noted

that since the data present in the raw, unanonymized trace is only a subset of the

universal information, even perfect deanonymization does not reduce the entropy of the

trace to zero. There is still a degree of uncertainty present in the deanonymized trace

due to the inherent lossy nature of the raw trace.



www.manaraa.com

40

CHAPTER 4. INFORMATION FLOW MODEL

Traditionally, research in the area of network traffic sanitization has utilized a very

optimistic view of the actual information captured within a log of network activity.

The attacks identified in past research implicitly assume that the network information

captured in the raw trace is complete, and accurately represents the entire environment

of and enterprise network. While this assumption simplifies attack formulation and

analysis, eventually the deanonymization results derived from such analysis overestimate

the accuracy and applicability of the attacks.

In this section we expand upon the idea of universal information that we introduced

and briefly described in Chapter 3. The notion of universal information implies that

the inferable information captured in a raw network activity log is an incomplete, and

possibly inaccurate, representation of the original enterprise network where the trace

was recorded. The universal information is the actual, complete truth regarding the

components of the network and the users of these components. The universal information

is a complete record of the true identities of all vertices in a network, the edges that

connect these vertices, users that operate the nodes, their behavioral profiles, and the

protocol statistics for all the nodes.

The raw data captured from an enterprise network, even at best, is only a proper

subset of the universal information for the network and cannot capture the universal

information set in its entirety.
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4.1 Information Flow

Recent attack research, attempting to extract sensitive information from a sanitized

trace, implicitly assumes the universal information set to be completely represented

by the raw activity capture trace. This assumption is very questionable since under

the notion of universal information, even perfect deanonymization leaves a degree of

uncertainty in the deanonymized trace. This is due to the intrinsic limitation of the raw

trace. Figure 4.1 represents the true information flow model.

Figure 4.1 Information Flow Model

This model shows the actual flow of information from the universal information set

to the captured and sanitized trace. The information contained in the sanitized trace is

bound by the information within the raw trace, which in turn is sampled from, and hence

a subset of, the universal information of real objects. Figure 4.2 utilizes venn diagrams

to represent the three possibilities of information objects, as captured in traces. UO

represents universal information for all objects and RO represents the raw recordable

information for all objects within the network.
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Figure 4.2 Information sets

4.1.1 Case 1: UO == RO

This case, while implicitly assumed in all past research work, is least likely to happen,

and is almost never observed in any raw network activity log. In this case the universal

information for all objects in an enterprise network is completely captured within the

raw trace recorded by the collector.

4.1.2 Case 2: RO ⊂ UO

This case, while theoretically possible, is still much less likely to appear in a real

dataset. In this case, the real information is a proper subset of the universal information.

While this case is a more accurate assumption to make for modeling purposes, this case

does not yet accurately represent an enterprise environment in the collected dataset.
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4.1.3 Case 3: RO 6⊆ UO

This is the most likely to happen case that represents the information captured within

a network activity log. As indicated in Figure 4.2, any raw network trace captures only

a part of universal information. Due to physical attributes of networks and the nature

of network usage, the activity logs also capture features that are not present in the

universal information. This presents a skewed picture of the actual universal information

as inferred from a raw trace.

In order to drive home this notion, we provide a few concrete examples that illustrate

the cases of information that is present in universal set but not in raw capture set and

vice-versa.

4.1.3.1 Example 1: |UO −RO| > 0

Several elements of the universal information set are either omitted from or inaccu-

rately represented in raw trace captures. As mentioned previously, this causes an added

degree of uncertainty to anonymized traces which the past work does not take into

account. Quiet hosts are the simplest examples of omitted information from this equiv-

alence class. The universal information set accounts for all hosts within the network. It

is highly likely for several hosts to be quiet (lunch hour!) or even offline (maintenance)

during trace collection. These hosts will not appear as objects within an anonymized

trace or even the raw trace. Hosts that are behind a Network Address Translator (NAT)

will only ever appear to be one single unique object in a raw trace, especially in the

absence of close manual investigation. Therefore, the raw trace will fail to capture the

presence of several hosts that appear in the universal information set. Similarly, any

changes made to host characteristics (operating system changes, starting/stopping ser-

vices) will be reflected in the universal information. These changes will be mirrored in

adversary’s external database, but will not appear in a raw trace captured before such
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changes were made.

4.1.3.2 Example 2: |RO − UO| > 0

Counter to natural intuition, the raw trace information set can easily over-run the

universal information set. This leads to the same end result, an unaccounted increase

in the uncertainty of the raw trace, as the case in example one does. The one-to-many

mappings between a single DHCP’d host and it’s many IP addresses, causes the raw

information set to record multiple identities for one host, while the universal information

set only records the host’s true identity at a given time. Mobile or guest hosts that might

join the network while activity logs are being collected will also be recorded in the raw

information set. The universal set however, will have no persistent record of such entities.

Similarly, any changes made to the network infrastructure (removed servers or clients)

will remain in a raw trace that was captured before the said change, but will not exist

in the universal information. An extreme case of this example is when the organization

liquidates its network after a trace is published. In this case the universal information

set is empty whereas the raw information set is still populated.

4.2 Probabilistic Interpretation

We begin with the universal information set that describes all unique object identities

(I) and sensitive attributes (s) belonging to the multi-set of all sensitive attributes.

U = (ik, sj) : ik ∈ I, sj ∈ AttributeV alue

Working from the simplifying Case 2 ( 4.1.2) above, the network data collected by

an organization is a subset of this universal information set.

R ⊂ U
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We consider an adversary who has access to a released anonymized trace T (R) as

well as some subset of U which forms the external thumbprint of the objects. The

adversary utilizes this information to perpetrate attacks against the sanitized trace with

the goal of inferring mappings between the identifiers within the trace and the sensitive

attributes. Since it is impractical and limiting to model the external thumbprint, we take

the pessimistic view that the adversary is armed with the complete universal information

set U.

Therefore the adversary’s knowledge of U and T(R) can be modeled in terms of a

set of pairs:

{(I1, S1), . . . . . . , (Id, Sd)}

In this set, Sd denotes a multi-set of sensitive attributes of the dth type and Ii denotes

the set of identifiers that can be logically associated with the dth attribute type.

Given the published trace T(R) and the adversary’s external thumbprint U, the ad-

versary’s belief that a sensitive attribute is associated with a unique identifier is quan-

tified by the conditional probability:

P ((i, s)|T (R), U)

As defined previously, the adversary’s goal is infer the best mapping between fea-

ture/attribute distributions for each unique object. Therefore, A mapping in (T(R), U)

is an assignment that matches each element of Sd with Id. Assuming that (T(R)), is

a high entropy sanitized trace, the adversary cannot cumulate deanonymized identities

to rule out future mappings, making each mapping equally likely. Therefore, for all

mutually independent mappings M1, . . . . . . ,Mn under above assumption:

P ((i, s)|T (R), U) = |Mk:Mkhaving(i,s)|
n
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The goal of the data publishing organization is to limit the adversary’s confidence

that a particular feature distribution is associated with any particular object. This

implies that anonymization with respect to a sensitive attribute should place an upper

bound on the adversary’s belief in (i, s). Thus, T(R) is adequately sanitized if the

following condition holds;

P ((i, s)|T (R), U) ≤ c

Where c is a parameter (0 < c < 1) specified by the auditor and agreed upon by the

collector. However since the raw dataset is a subset of the universal information set, we

can define an upper bound for this breach probability.

∀(i, s) : P ((i, s)|T (R), U) ≤ P ((i, s)|T (R), R)

Therefore we can safely conclude that the vulnerability of an anonymized trace is

implicitly bounded by the information contained within the raw trace. This informa-

tion being a subset of the universal information set, automatically introduces a de-

gree of uncertainty within the anonymized trace that is irreducible even under perfect

deanonymization.
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CHAPTER 5. FUTURE WORKS

In this work we have envisioned a comprehensive reference model that aims to capture

the network trace sanitization problem. We have laid theoretical foundations for all the

elements required to complete our model. While previous work in this field has addressed

parts of this problem, our model identifies several new avenues of future work that are

required to solve the problem in its entirety. Below we present a roadmap for future

innovations in the field of network trace anonymization.

5.1 Roadmap

Figure 5.1 summarizes our vision of future research work. The red areas indicate

those elements that have received their due attention, either in this work or in past

work, whereas the green areas indicate the components that have been theoretically

described in this thesis and merit more attention in the future.

Special attention is due, to the formal development of a usability guarantee function

and metric. Equally important is the formalization of the accuracy metric. Very little

work has been done in the past on derivation of explicit privacy and usability policies.

For the sanitization problem to be solved, it is imperative that a formal specification

language for privacy policy and usability policy be developed. Continued research in the

area of cryptographic functions that are at the core of sanitization transforms is also an

open research avenue. Finally, the proposed architecture for a collection and sanitization

tool merits careful implementation and rigorous testing.
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CHAPTER 6. CONCLUSION

To facilitate network security research, the need for realistic traffic from enterprise

networks has grown rapidly over the years. This thesis ha addressed several of the issues

that plague the availability of this data. We have described a reference model that

distills the big picture of the sanitization problem and presents it from the point of view

of the organization that is reluctant to share its network activity logs. Our information

flow model and its interpretation have extended the threat model typically associated

with the sanitization problem with the notion of universal information (Figure 6.1).

Figure 6.1 Updated Threat Model

This threat model illustrates the over-estimation that is implicit in the results pub-

lished with previous works on subverting trace anonymization. We have also provided

a functional architecture for a configurable and extensible multi-layered trace collection

and anonymization tool and an information theoretic privacy metric that can be utilized



www.manaraa.com

50

to quantify the strength of an anonymization scheme. Finally, we utilized our reference

model to pave the way for future work required to solve the sanitization problem.
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